1. Introduction

In the last decade, effect-directed analysis (EDA) gave new impetus for the discovery of new potential drug compounds from natural sources. High-performance thin-layer chromatography (HPTLC) was established as a high-throughput and reliable separation technique that is frequently utilized for screening of highly complex samples, such as crude plant extracts. HPTLC combined with biological and biochemical assays and high-resolution mass spectrometry (HRMS) followed by bio-assay-guided isolation and NMR was demonstrated as a straightforward strategy for bioanalysis of natural products [1,2].

Diabetes and Alzheimer’s disease (AD) represent two of the global health issues. Type 2 diabetic patients, the majority of the people with diabetes, suffer from the hyperglycemia. The salivary and pancreatic α-amylases and α- and β-glucosidases are involved in the degradation and digestion of poly- and oligosaccharides to glucose, hence, glucosidase and amylase inhibitors are of therapeutic interest in type 2 diabetes as well as overweight and obesity [3,4]. AD is associated with the loss of cholinergic neurons in the brain and decrease in the neurotransmitter acetylcholine. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are crucially involved in the hydrolysis of the acetylcholine into choline. Hence, AChE-selective and dual AChE/BChE inhibitors represented the first generation of medicines for the decrease of the AD progression rate [5]. The fight against infectious diseases, a major global public hazard, is also a challenge due to the increase in the emergence of the (multi)drug-resistant microorganisms [6].

In this study (HP)TLC combined with direct α- and β-glucosidase, α-amylase and antimicrobial assays will be demonstrated for the comparison of the bio-profiles (the enzyme inhibitory and antibacterial potentials) of invasive goldenrod species.

2. Results

_Solidago canadensis_ (Canadian goldenrod) root extract was introduced to the HPTLC-enzyme inhibitory assays, including the α-glucosidase, β-glucosidase, α-amylase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) assays. Two compound zones, detected as black zones by HPTLC after derivatization with the vanillin sulfuric acid, were active in all enzyme inhibitory tests (Figures 1 and 2). HPTLC-HESI-HRMS analysis of these compounds provided the same molecular formula C_{20}H_{28}O_{3} that was confirmed by HPTLC-DART-HRMS and SPME-GC-MS.

After preparative isolation, the compounds were identified by NMR as solidagenone and presolidagenone (its two isomers) [7].

3. Conclusions

High-throughput, fast, relatively cheap HPTLC-bioassays were successfully used for the screening of bioactive plant components. HPTLC-HRMS and NMR of the isolates ensured the identification of the active compounds that showed anti-hyperglycemiac and anti-cholinesterase activity. Thus, they can be potential candidate for drug discovery in the future.
4. Acknowledgements

Á.M. Móricz thanks the OECD for the scholarship JA00092484 that allowed her to stay at JLU Giesen. Instrumentation was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – INST 162/471-1 FUGG; INST 162/536-1 FUGG. This work was partially funded by the National Research, Development and Innovation Office of Hungary (NKFIH K128921). Thank S. Béni and A. Darcsi for the NMR identification.

References